15 research outputs found

    Hematopoietic Cells Derived from Cancer Stem Cells Generated from Mouse Induced Pluripotent Stem Cells

    Get PDF
    Cancer stem cells (CSCs) represent the subpopulation of cancer cells with the ability to differentiate into other cell phenotypes and initiated tumorigenesis. Previously, we reported generating CSCs from mouse induced pluripotent stem cells (miPSCs). Here, we investigated the ability of the CSCs to differentiate into hematopoietic cells. First, the primary cells were isolated from malignant tumors that were formed by the CSCs. Non-adherent cells (NACs) that arose from adherent cells were collected and their viability, as well as the morphology and expression of hematopoietic cell markers, were analyzed. Moreover, NACs were injected into the tail vein of busulfan conditioned Balb/c nude mice. Finally, CSCs were induced to differentiate to macrophages while using IL3 and SCF. The round nucleated NACs were found to be viable, positive for hematopoietic lineage markers and CD34, and expressed hematopoietic markers, just like homing to the bone marrow. When NACs were injected into mice, Wright-Giemsa staining showed that the number of white blood cells got higher than those in the control mice after four weeks. CSCs also showed the ability to differentiate toward macrophages. CSCs were demonstrated to have the potential to provide progenies with hematopoietic markers, morphology, and homing ability to the bone marrow, which could give new insight into the tumor microenvironment according to the plasticity of CSCs

    A novel model of liver cancer stem cells developed from induced pluripotent stem cells

    Get PDF
    Background Liver cancer is the second most common cause of cancer-related death. Every type of tumours including liver cancer contains cancer stem cells (CSCs). To date, the molecular mechanism regulating the development of liver CSCs remains unknown. Methods In this study, we tried to generate a new model of liver CSCs by converting mouse induced pluripotent stem cells (miPSCs) with hepatocellular carcinoma (HCC) cell line Huh7 cells conditioned medium (CM). miPSCs treated with CM were injected into the liver of BALB/c nude mice. The developed tumours were then excised and analysed. Results The primary cultured cells from the malignant tumour possessed self-renewal capacity, differentiation potential and tumorigenicity in vivo, which were found rich in liver cancer-associated markers as well as CSC markers. Conclusions We established a model of liver CSCs converting from miPS and showed different stages of stemness during conversion process. Our CSC model will be important to assess the molecular mechanisms necessary to develop liver CSCs and could help in defeating liver cancer

    Signaling Inhibitors Accelerate the Conversion of mouse iPS Cells into Cancer Stem Cells in the Tumor Microenvironment

    Get PDF
    Cancer stem cells (CSCs) are a class of cancer cells characterized by self-renewal, differentiation and tumorigenic potential. We previously established a model of CSCs by culturing mouse induced pluripotent stem cells (miPSCs) for four weeks in the presence of a conditioned medium (CM) of cancer cell lines, which functioned as the tumor microenvironment. Based on this methodology of developing CSCs from miPSCs, we assessed the risk of 110 non-mutagenic chemical compounds, most of which are known as inhibitors of cytoplasmic signaling pathways, as potential carcinogens. We treated miPSCs with each compound for one week in the presence of a CM of Lewis lung carcinoma (LLC) cells. However, one-week period was too short for the CM to convert miPSCs into CSCs. Consequently, PDO325901 (MEK inhibitor), CHIR99021 (GSK-3 beta inhibitor) and Dasatinib (Abl, Src and c-Kit inhibitor) were found to confer miPSCs with the CSC phenotype in one week. The tumor cells that survived exhibited stemness markers, spheroid formation and tumorigenesis in Balb/c nude mice. Hence, we concluded that the three signal inhibitors accelerated the conversion of miPSCs into CSCs. Similarly to our previous study, we found that the PI3K-Akt signaling pathway was upregulated in the CSCs. Herein, we focused on the expression of relative genes after the treatment with these three inhibitors. Our results demonstrated an increased expression of pik3ca, pik3cb, pik3r5 and pik3r1 genes indicating class IA PI3K as the responsible signaling pathway. Hence, AKT phosphorylation was found to be up-regulated in the obtained CSCs. Inhibition of Erk1/2, tyrosine kinase, and/or GSK-3 beta was implied to be involved in the enhancement of the PI3K-AKT signaling pathway in the undifferentiated cells, resulting in the sustained stemness, and subsequent conversion of miPSCs into CSCs in the tumor microenvironment

    Differentiation of cancer stem cells into erythroblasts in the presence of CoCl2

    Get PDF
    Cancer stem cells (CSCs) are subpopulations in the malignant tumors that show self-renewal and multilineage differentiation into tumor microenvironment components that drive tumor growth and heterogeneity. In previous studies, our group succeeded in producing a CSC model by treating mouse induced pluripotent stem cells. In the current study, we investigated the potential of CSC differentiation into blood cells under chemical hypoxic conditions using CoCl2. CSCs and miPS-LLCcm cells were cultured for 1 to 7 days in the presence of CoCl2, and the expression of VEGFR1/2, Runx1, c-kit, CD31, CD34, and TER-119 was assessed by RT-qPCR, Western blotting and flow cytometry together with Wright-Giemsa staining and immunocytochemistry. CoCl2 induced significant accumulation of HIF-1 alpha changing the morphology of miPS-LLCcm cells while the morphological change was apparently not related to differentiation. The expression of VEGFR2 and CD31 was suppressed while Runx1 expression was upregulated. The population with hematopoietic markers CD34(+) and c-kit(+) was immunologically detected in the presence of CoCl2. Additionally, high expression of CD34 and, a marker for erythroblasts, TER-119, was observed. Therefore, CSCs were suggested to differentiate into erythroblasts and erythrocytes under hypoxia. This differentiation potential of CSCs could provide new insight into the tumor microenvironment elucidating tumor heterogenicity

    Different pancreatic cancer microenvironments convert iPSCs into cancer stem cells exhibiting distinct plasticity with altered gene expression of metabolic pathways

    No full text
    Background Cancer stem cells (CSCs) are generated under irregular microenvironment in vivo, of which mimic is quite difficult due to the lack of enough information of the factors responsible for cancer initiation. Here, we demonstrated that mouse induced pluripotent cells (miPSCs) reprogrammed from normal embryonic fibroblasts were susceptible to the microenvironment affected by cancer cells to convert into CSCs in vivo. Methods Three different pancreatic cancer line cells, BxPC3, PANC1, and PK8 cells were mixed with miPSCs and subcutaneously injected into immunodeficient mice. Tumors were evaluated by histological analysis and cells derived from iPSCs were isolated and selected from tumors. The isolated cells were characterized for cancer stem cell characters in vitro and in vivo as well as their responses to anticancer drugs. The impact of co-injection of iPSCs with cancer cells on transcriptome and signaling pathways of iPSCs was investigated. Results The injection of miPSCs mixed with human pancreatic cancer cells into immunodeficient mice maintained the stemness of miPSCs and changed their phenotype. The miPSCs acquired CSC characteristics of tumorigenicity and self-renewal. The drug responses and the metastatic ability of CSCs converted from miPSCs varied depending on the microenvironment of cancer cells. Interestingly, transcriptome profiles of these cells indicated that the pathways related with aggressiveness and energy production were upregulated from the levels of miPSCs. Conclusions Our result suggests that cancer-inducing microenvironment in vivo could rewire the cell signaling and metabolic pathways to convert normal stem cells into CSCs

    Chronic exposure to FGF2 converts iPSCs into cancer stem cells with an enhanced integrin/focal adhesion/PI3K/AKT axis

    No full text
    We previously demonstrated the conversion of normal stem cells, including induced pluripotent stem cells (iPSCs), into cancer stem cells (CSCs) without genetic manipulation. Herein, we designed a meta-analysis to assess gene expression profiles in different breast cancer cell lines focusing on the secretory factors responsible for conversion. As a result, fibroblast growth factor 2 (FGF2) was found to be the best candidate in T47D and BT549 cells, of which conditioned medium was previously successful in inducing CSCs. When treated with 3.1 μg/ml FGF2, mouse iPSCs not only maintained survival without LIF for three weeks but also acquired growth ability independent of FGF2. The resultant cells exhibited expression of stemness and cancer stem cell markers, sphere-forming ability, differentiation, and tumorigenicity with malignancy. The primary cultures of the tumor confirmed the signatures of CSCs with two different phenotypes with or without GFP expression under control of the Nanog promoter. Bioinformatic analysis of gene expression profiles suggested constitutive autocrine activation of the FGF receptor, integrins, focal adhesions, and PI3K/AKT pathways. FGF2 could potently initiate cancer as a component of the inflammatory microenvironment

    シュウハスウ リョウイキ デノ ブブンテキ モデル マッチング ニ モトヅク ステレオ オンバ セイギョケイ セッケイ

    Get PDF
    The objective for sound field control is to make acoustic characteristics of a listening room be close to those of the desired system. Conventional methods used to apply feedforward controllers such as digital filters to achieve this objective, however, feedback controllers were also necessary in order to attenuate noise or to compensate uncertainty of acoustic characteristics of the listening room. Since acoustic characteristics are well modeled on frequency domain, it is efficient to design controllers from the view point of frequency responses, but it is significantly difficult to design multi input multi output (MIMO) control system on wide frequency domain. In this paper, partial model matching method on frequency domain was adopted because this method required only sampled data instead of complex mathematical models c)f the plant in order to design controllers for MIMO systems.The method was applied to design 2 degree-of-freedom controllers for acoustic equalization and noise reduction. Experiments showed effectiveness of the proposed method
    corecore